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SECTION 1

INTRODUCTION

The recent introduction of closed-loop computer controlled

test systems and computer data acquisition systems has resulted

in different methods being employed to generate fatigue crack

length data. One of the present methods of nonvisual crack

length determination is based on a crack-mouth-opening-

displacement, CMOD, compliance method. The CMOD method has

proven to be an effective nonvisual means of determining crack

length at room temperature, but is somewhat limited for use at

elevated temperatures.

The University of Dayton Research Institute (UDRI) is

presently using a standard clip gage as specified in ASTM

E399-83, "Standard Test Method for Plane-Strain Fracture

Toughness of Metallic Materials," [1], for crack length

determination at room temperature. This method of crack length

determination at room temperature has been shown to yield results

that are as accurate as the visual method [2] but is usually

restricted to near room temperature conditions by the materials

used in the clip gage construction.

Nonvisual crack length determination at elevated

temperature generally employs a device that resides outside the

elevated temperature zone and is connected to the specimen

through a temperature resistant material such as quartz.



Although this type of device is used for high temperature CMOD

measurements, it generally restricts test frequencies to 3 Hz or

lower.

The UDRI has investigated a number of nonvisual crack

length determination methods at elevated temperatures and high

frequencies for threshold determination and major-minor fatigue.

One promising method of obtaining nonvisual crack lengths at

elevated temperature/high frequency is specimen strain. When a

compact type, C(T), specimen is subjected to a tensile load, it

deforms as shown in Figure 1. The resulting negative elastic

strain per unit load, measured on the back-face of the specimen,

can be correlated to crack length as shown previously by Richards

and Deans [3].

The purposes of this report are: (a) to evaluate the use

of specimen strain for determining crack length at elevated

temperature/high frequency and (b) to compare strain determined

crack lengths with CMOD and visually determined crack lengths.
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Figure 1. Deformation of a C(T) Specimen Under
Tension Loading.
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SECTION 2

ANALYTICAL AND EXPERIMENTAL RESULTS

2.1 ANALYTICAL BACK-FACE STRAIN COMPLIANCE

A two-dimensional finite element analysis [4] was used to

determine the strain profile on the back-face of a compact type

specimen for a/W ranging from 0.2 to 0.8. The strain profile is

shown in Figure 2, where the analytical strain is plotted as a

function of location as measured by the specimen half height

ratio (Y/H). From the strain analysis, an average back-face

strain value for a 1/4 inch (6.4 mm) gage length was calculated.

The back-face strain values were then used to calculate a

positive non-dimensional strain compliance, -EBCW, at various a/W

values ranging from 0.2 to 0.8.

The average strain compliance values were calculated for a

1/4 inch (6.4 mm) gage length on a C(T) specimen with W = 40 mm.

For a change of ±25 percent in the ratio of gage length to

specimen width, changes in compliance values range from

approximately ±1/2 percent at a/W = 0.2 to approximately +3

percent at a/W = 0.8. The maximum change in calculated crack

length is 0.003 inch (0.08 mm).

A mathematical expression was derived to express -EBCW as a

function of a/W. This mathematical expression was in the form of

a sixth degree polynomial

4
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Figure 2. Analytical Back-Face Strain Profile from
Finite Element Analysis.

5



-EBCW = 40.7730 - 673.330a + 4648.77a - 16372.8a3

+ 31712.6a 4 - 31853.6 5 + 13172.9a 6

where

E = Elastic Modulus,

B = Specimen Thickness,

C = s/P = Compliance,

W = Specimen Width,

a = a/W = Crack Length Ratio,

and where

S = Strain,

P = Load,

a = Crack Length,

Figure 3 shows the analytically determined -EBCW versus a/W data

points and the polynomial fit to those points.

For computer applications, the crack length ratio can be

expressed as a function of strain compliance as follows:

a/W = 0.99999 - 2.00085U - 0.75959U2 + 10.01565U3

45 6 (2)
- 18.39149U4 + 14.23767U - 4.05333U
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where

U = I/v'-EBCW. (2a)

The function used for U is based on the CMOD calibration

expression formulated in Reference 5.

The flatness of the curve at a/W values below 0.4 causes

the strain compliance to be less sensitive to crack growth

extension than for values above 0.4. The sensitivity is

approximately 30 times greater at a/W values near 0.8 than at a/W

values near 0.2.

2.2 EXPERIMENTAL BACK-FACE STRAIN DATA

Four IN100 metric C(T) specimens with a width, W, of 40 mm

and a thickness, B, of 10 mm were strain-gaged with 1/4 inch, 350

ohm gages placed on the back-face at the notch tip plane. Figure

4 shows a specimen mounted in the loading clevises with strain

gages on the back-face and the top-face. For the present, the

discussion will be concerned only with the back-face strain gage.

The back-face gage was wired in a quarter bridge configuration

using an excitation voltage of 10 VDC and an amplification of

1000. The specimens were tested under constant stress intensity

factor conditions and data were collected at a/W values

approximately equal to the analytical data points. The load

versus strain data were recorded on an X-Y plotter and were also

collected with an analog-to-digital data acquisition system. The

8
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Figure 4. Strain Gaged C(T) Specimen.
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computer calculated the strain compliance based on a linear

regression fit to a specified window of the unloading portion of

the data. A strain compliance value was calculated from the

autographic data plots by visually determining a best fit line

through the unloading trace, using the same window as used by the

computer. The strain compliance determined by the two methods

generally varied by less than 0.2 percent.

To evaluate -EBCW, the experimental values of B and W were

measured to within 0.5 percent and the experimental value for C

could be determined within 0.5 percent but the value for modulus

(E) must be determined based on a calibration using an initial

visual crack length plus an estimated curvature correction [2]

and Equation 1.

A second crack length determination was done using CMOD

compliance [6]. The CMOD compliance method of crack length

determination has been shown to yield results that are comparable

in accuracy to visual measurements [2]. The strain determined

a/W value is plotted against the CMOD determined a/W value in

Figure 5. The error in strain determined crack length is less

than 2 percent of the CMOD determined crack length.

One IN718 C(T) specimen with W = 40 mm was instrumented

with a free filament strain gage using ceramic cement. The

specimen was tested at 1200OF and the strain determined a/W value

10
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was plotted against the CMOD determined a/W value (Figure 6).

The results are very similar to the room temperature results.

2.3 ANALYTICAL DUAL-LOCATION STRAIN COMPLIANCE

The insensitivity of the back-face gage at small a/W values

led to the decision to consider the use of more than one gage.

Specimen thickness precluded the use of dual back-face gages,

therefore a gage on the top-face of the specimen was considered.

To increase the sensitivity in the range of 0.2 < a/W < 0.5, it

was decided to place the strain gage at a position that would

produce the greatest change in strain as a/W varies from 0.2 and

0.5. An analytical top-face strain profile, shown in Figure 7,

was determined from a finite element analysis. The greatest

strain differential between 0.2 < a/W < 0.5 occurs with a gage

placement of X/W = 0.5. From the strain analysis, an analytical

top-face strain value for 1/4 inch (6.4 mm) gage length was

calculated. The sum of the top-face and back-face strain values

were then used to calculate the dual-location non-dimensional

strain compliance at a/W values ranging from 0.2 to 0.8.

A mathematical expression was derived to express -EBCW as a

function of a/W. This mathematical expression was in the form of

a sixth degree polynomial

2 3
-EBCW = 22.5980 - 365.802a + 2874.93a - i0954.2a

45 6 (3)
+ 22855.1a4 - 24477.2a + 10704.9a 6

12
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Figure 8 shows the analytically determined -EBCW versus a/W data

points and the polynomial fit to those points. The polynomial

expression fits the data points with an error of less than 1

percent.

The crack length ratio can be expressed as a function of

dual-location strain compliance as follows:

a/W = 0.99996 - 2.03989U + 1.83981U2 - 36.0058U3

(4)
+ 154.478U4 - 234.244U5 + 114.972U6

where

U = I/v'-EBCW. (4a)

2.4 EXPERIMENTAL DUAL-LOCATION STRAIN DATA

Two metric compact type specimens with a width of 40 mm and

a thickness of 10 mm were strain-gaged with 1/4 inch, 350 ohm

gages placed on the back-face at the notch tip plane and on the

top-face at X/W = 0.5. The strain gages were wired in a

Wheatstone bridge configuration with the gages in opposite legs

of the bridge and precision resistors in the other legs.

The specimens were tested under constant stress intensity

factor conditions; strain-load and CMOD-load data were collected

and stored using a computer and the strain-load data were also

15
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Figure 8. Analytical Dual-Location Strain Compliance
Versus Crack Length Ratio.
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directly recorded using an X-Y plotter. The computer calculated

the CMOD and strain compliance based on a linear regression fit

to a specified window on the unloading portion of the data. A

strain compliance value was calculated from the autographic data

plots by visually determining a best fit line through the

unloading trace, using the same window as used by the computer.

The strain compliance determined by the two methods generally

varied by less than 0.2 percent.

The dual-location strain determined a/W values are plotted

against the CMOD determined a/W values in Figure 9. The variance

in a/W values determined by the two methods is generally less

than 1 percent.
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SECTION 3

DISCUSSION AND RECOMMENDATIONS

3.1 DISCUSSION

A comparison of back-face and dual-location strain

compliance curves is given in Figure 10. To illustrate the

differences in sensitivity between the two compliance curves at

values of a/W less than 0.5, the slopes of each curve as a

function of a/W were plotted in Figure 11. The dual-location

gages exhibit an increase in sensitivity over the back-face gage

that ranges from 100 percent at a/W = 0.2 to less than 25 percent

at a/W = 0.5.

There are no currently available guidelines for the

acceptability of nonvisual crack length measurements versus

visual measurements. The nonvisual determined crack lengths were

compared to the visual measurements to determine the accuracy of

the nonvisual methods. Dual-location strain compliance and CMOD

compliance determined a/W values are plotted against the visual

surface measurement a/W values (Figure 12). The nonvisual

methods show a consistently longer crack length. When the visual

crack lengths were corrected for crack curvature in accordance

with the requirements of ASTM E647-83 [7] and the results were

replotted in Figure 13, there was very good correlation with a

maximum variation of +1 percent between visual and nonvisual

determined a/W values.
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3.2 RECOMMENDATIONS

Compliance based on specimen strain has been shown to

provide crack length values that are comparable to visual

measurements (at room temperature). An elevated temperature test

that was performed on a back-face gaged specimen indicates that

the method can be used at 1200'F with appropriate calibration.

All tests were conducted at a frequency of 20 Hz, but the

frequency response of strain gages should allow for considerably

higher test frequencies.

The back-face strain compliance and a/W relationships

derived in this investigation are valid for a C(T) specimen

having a ratio of active strain gage length to specimen width of

approximately 1/6. These expressions are applicable for ratios

within +25 percent of 1/6. Outside of this range other

expressions would have to be developed.

Additional tests are needed to validate the higher

frequency capabilities and the dual-location strain compliance

method at other temperatures.
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